Development of an Ensemble Multi-stage Machine for Prediction of Breast Cancer Survivability

Authors

  • J. Razmara Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.
  • M. Salehi Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.
  • Sh. Lotfi Department of Computer Science, Faculty of Mathematical Sciences, University of Tabriz, Tabriz, Iran.
Abstract:

Prediction of cancer survivability using machine learning techniques has become a popular approach in recent years. ‎In this regard, an important issue is that preparation of some features may need conducting difficult and costly experiments while these features have less significant impacts on the final decision and can be ignored from the feature set‎. ‎Therefore‎, ‎developing a machine for prediction of survivability‎, ‎which ignores these features for simple cases and yields an acceptable prediction accuracy‎, ‎has turned into a challenge for researchers‎. ‎In this paper‎, ‎we have developed an ensemble multi-stage machine for survivability prediction which ignores difficult features for simple cases‎. ‎The machine employs three basic learners‎, ‎namely multilayer perceptron (MLP), ‎ support vector machine (SVM), and decision tree (DT)‎, ‎in the first stage to predict survivability using simple features‎. ‎If the learners agree on the output‎, ‎the machine makes the final decision in the first stage‎. Otherwise, ‎for difficult cases where the output of learners is different‎, ‎the machine makes decision in the second stage using SVM over all features‎. The developed model was evaluated using the Surveillance, Epidemiology, and End Results (SEER) database. The experimental results revealed that ‎the developed machine obtains considerable accuracy while it ignores difficult features for most of the input samples‎‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

development and implementation of an optimized control strategy for induction machine in an electric vehicle

in the area of automotive engineering there is a tendency to more electrification of power train. in this work control of an induction machine for the application of electric vehicle is investigated. through the changing operating point of the machine, adapting the rotor magnetization current seems to be useful to increase the machines efficiency. in the literature there are many approaches wh...

15 صفحه اول

Breast Cancer Survivability Prediction via Classifier Ensemble

This paper presents a classifier ensemble approach for predicting the survivability of the breast cancer patients using the latest database version of the Surveillance, Epidemiology, and End Results (SEER) Program of the National Cancer Institute. The system consists of two main components; features selection and classifier ensemble components. The features selection component divides the featu...

full text

ADABOOST ENSEMBLE ALGORITHMS FOR BREAST CANCER CLASSIFICATION

With an advance in technologies, different tumor features have been collected for Breast Cancer (BC) diagnosis, processing of dealing with large data set suffers some challenges which include high storage capacity and time require for accessing and processing. The objective of this paper is to classify BC based on the extracted tumor features. To extract useful information and diagnose the tumo...

full text

An Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization

Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...

full text

An Ensemble Classification Model for the Diagnosis of Breast Cancer Using Stacked Generalization

Introduction: Breast cancer is one of the most common types of cancer whose incidence has increased dramatically in recent years. In order to diagnose this disease, many parameters must be taken into consideration and mistakes are possible due to human errors or environmental factors. For this reason, in recent decades, Artificial Intelligence has been used by medical practitioners to diagnose ...

full text

an application of fuzzy logic for car insurance underwriting

در ایران بیمه خودرو سهم بزرگی در صنعت بیمه دارد. تعیین حق بیمه مناسب و عادلانه نیازمند طبقه بندی خریداران بیمه نامه براساس خطرات احتمالی آنها است. عوامل ریسکی فراوانی می تواند بر این قیمت گذاری تاثیر بگذارد. طبقه بندی و تعیین میزان تاثیر گذاری هر عامل ریسکی بر قیمت گذاری بیمه خودرو پیچیدگی خاصی دارد. در این پایان نامه سعی در ارائه راهی جدید برای طبقه بندی عوامل ریسکی با استفاده از اصول و روش ها...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 3

pages  371- 378

publication date 2020-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023